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Abstract: Mechanical characterization of tissue is an important but 
complex task. We demonstrate the simultaneous use of Mueller matrix 
imaging (MMI), enhanced backscattering (EBS) and digital image 
correlation (DIC) in a bovine pericardium (BP) tensile test. The interest in 
BP relies on its wide use as valve replacement and biological patch. We 
show that the mean free path (MFP), obtained through EBS measurements, 
can be used as an indicator of the anisotropy of the fiber ensemble. Our 
results further show a good correlation between retardance images and 
displacement vector fields, which are intrinsically related with the fiber 
interaction within the tissue. 
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1. Introduction 

Heart transplant procedures cover only a small portion of the actual needs of patients with 
heart related problems. In 2012, and only in the US, heart donation rates remained flat at 3.5 
donations per 1000 deaths [1]. Most of the top causes of heart related diseases, such as aortic 
and mitral valve disorders, require valve replacement using bioprosthetic or mechanical heart 
valves. Bovine pericardium (BP) is a widely used soft tissue for medical applications such as 
valve replacement [2]. Among other interesting features, patients with BP-based valves 
usually do not need a life-long anticoagulation treatment [3]. Although BP is commonly used 
in medical applications, the knowledge to fully predict its behavior once inside the human 
body is still unclear, and long-term results are not fully documented. In general, in vivo soft 
tissue characterization methods are limited and very expensive [4]. 

Recently, digital image correlation (DIC) and Müeller matrix imaging (MMI) have been 
reported as useful techniques for extracting information from biological tissue [5,6]. 
Similarly, enhanced backscattering (EBS) measurements have shown to provide information 
of structural changes in soft tissue during mechanical tests [7]. In general, optical 
characterization methods allow for performing non-contact and less invasive procedures, 
particularly those intended to obtain mechanical features of soft tissue. Moreover, optical 
techniques for soft tissue tests have the potential to be integrated with fiber optics technology 
and lead to applications such as in vivo early tissue diagnosis [8]. In this paper, we report on 
the application of MMI for uniaxial tensile tests of BP previously fixed with glutaraldehyde. 
Our experiments are performed using a setup specifically designed for mechanical testing of 
soft tissue [9]. This allows for incorporating optical techniques for tissue analysis during 
uniaxial tension tests. In particular, data from DIC, EBS and MMI are obtained 
simultaneously thus providing information regarding structural changes of the tissue samples 
during the tensile test. In this way, the mechanical properties of the tissue can be readily 
correlated with the optical measurements. 

2. Materials and methods 

2.1 Experimental setup 

The experimental setup consists of a mechanical testing device designed to perform tensile 
tests on thin and soft materials [9]. This mechanical “minitester” further incorporates optical 
elements to acquire information for EBS and MMI measurements. As depicted schematically 
in Fig. 1, a set of circular polarizers is used to generate and analyze the states of polarization 
required for MMI [6]. Images are acquired via a long working distance microscope and a 
CCD camera, both arranged to register the beam coming out from the sample in the forward 
direction (green arrows in Fig. 1). Illumination for both, MMI and EBS, is performed with a 
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pulsed, frequency-doubled Nd:YAG laser at 532nm, with a spot diameter of approximately 
0.5 cm. 

A second CCD camera placed as shown on the right side of Fig. 1 registers data for EBS 
measurements. After interacting with the sample, the scattered light in the backward direction 
passes through the circular polarizer for filtering of specular reflections. The EBS cone is then 
registered using a lens with a focal length of 45 mm and the 1024x768 CCD. This 
configuration provides a resolution of 0.1 mrad with no moving parts once adjustments on the 
alignment have been completed [10]. 

 

Fig. 1. Experimental setup: data for MMI, DIC and EBS are acquired during a single uniaxial 
test. The setup includes circular polarizers (CP), a beam splitter (BS), a laser and a white light 
source for illumination as well as two CCD cameras (see text). 

Conventional images are recorded using white light illumination for subsequent 
processing using DIC. The mechanical “minitester,” CCD cameras and laser trigger are 
controlled and synchronized with a PC via a Virtual Instrument (VI) programmed in 
LabVIEW. The VI is set to start the test in a sequential manner; first, the sample is elongated 
in steps of 200 µm, simultaneously acquiring white light images and data such as applied 
force and displacement for subsequent mechanical analysis. In order to avoid relaxation 
effects in the BP sample during MMI measurements, the VI is set to pause during 4 minutes 
once the applied load reaches a preset value. This relaxation time was determined 
experimentally through preliminary measurements showing that after 4 minutes, relaxation 
effects are negligible for MMI and EBS analysis. After this pause, the Nd:YAG laser is 
triggered to launch 10 pulses per each of the 16 combinations on the circular polarizers 
required for the Müeller matrix for the corresponding loading condition. Subsequently, the 
laser is triggered again to launch 10 pulses for acquiring images for EBS analysis. The VI 
then starts the loading procedure again for data and image acquisition under different loading 
conditions. 

2.1 Sample preparation 

As other connective tissues, BP has a complex structure based on three layers: the serosa, the 
fibrosa and the epipericardial connective tissue layer [2]. The fibrosa layer is mainly made of 
wavy bundles of collagen fibers and elastin; the properties of this layer provide bovine 
pericardium with the appropriate features for its clinical use as a biological patch and for 
heart valve replacement [2,3]. For our experiments, pericardial sacs from 18 month-old calves 
were collected fresh from a local slaughterhouse. Sample sheets of selected sacs were cut and 
hung in custom-built frames; subsequently, they were cross-linked with glutaraldehyde (GA). 
The fixation process was carried out during 24 hours at 4°C, using 0.5% GA in 0.1 M 
phosphate buffered saline solution with a pH of 7.4 [5]. Next, the sheets were washed in 
distilled water and subsequently cut with a special jig, according to the ASTM D1708 
standard, to obtain samples with a dog bone shape. Finally, the samples were immersed and 
stored in a glycerin solution until the experiment was performed. 
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2.3 Mean free path measurements (EBS) 

According to EBS theory, when light interacts with multiple scattering media a twofold 
enhancement in the diffuse intensity appears in the exact backward direction. The factor of 
two arises from photons going over time-reversed paths, which constructively interfere in the 
direction of backscattering [11,12]. Out from the exact backscattering direction, the 
enhancement decreases inversely proportional to the mean free path (MFP), forming an 
angular distribution that decays to the diffusive intensity. For non-absorbing media, the 
intensity α near the backscattering direction as a function of the solid angle θ is given by [12]: 
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In this expression, q = 2πθ/λ, l is the photon mean free path; z0 is given by the boundary 
conditions and for a plane geometry z0 ~0.7 l [12]. Equation (1) shows that for fixed boundary 
conditions and wavelength λ, the shape of the EBS cone is fully described by the mean free 
path (MFP), which is a measure of the turbidity of the sample. This allows for obtaining an 
experimental measurement of the MFP for a sample upon evaluation of the width of the 
angular distribution of the backscattered intensity. In our experiments, the intensity recorded 
in each pixel of the CCD was mapped to the scattering angle considering both, the pixel width 
and the focal length as described in [10]. Subsequently, Eq. (1) was fitted to the experimental 
data to obtain the MFP (i.e., l) in terms of the wavelength and the width of the EBS cone. 

2.4 Experimental Müeller matrix decomposition 

Müeller calculus is a well-established technique for homogeneous transparent media. 
Nevertheless, when dealing with inhomogeneous materials such as tissue, the elements of the 
experimental Müeller matrix can mislead to a non-physical behavior of the material [6]. 
Scattering, depolarization and inhomogeneity of the material must be considered in data 
analysis in order to obtain the relevant physical parameters from the matrix. Two methods 
have been reported aiming at solving this difficulty: the so-called polar decomposition [13], 
and the differential matrix formalism [14]. We used the extension of the differential matrix 
formalism for depolarizing anisotropic media [15], in which the spatial derivative of the 
Müeller matrix along the propagation axis follows the relation: 

 
( )

( )
d z z

dz
=M mM  (2) 

M(z) represents the position dependent Müeller matrix and m is the differential matrix. 
Equation (2) implies that the optical effect caused by the material scales with the sample 
thickness [14,15]. For the boundary condition M(z = 0) = I, where I is the identity matrix, the 
solution of Eq. (2) has the form M = exp(dm), in which d is the path traveled by the light 
beam. In our experiments, we construct the experimental Müeller matrix using the different 
combinations of the circular polarizers for a sample of thickness d. Each pixel in the acquired 
images thus has an associated Müeller matrix; these are subsequently used to obtain the 
differential matrix m using Jordan decomposition. The Müeller matrix provides information 
such as linear retardance (δ), optical rotation and average depolarization [6]. We focus on the 
linear retardance, which is related to the stress-induced changes in refractive index. 

2.5 DIC analysis 

Digital image correlation is a full-field and non-contact technique to measure 
displacement/strain vector fields (DVFs) on the surface of materials. With the series of 
acquired images during the mechanical tests, the DVFs uk (xk, yk) and vk (xk, yk) between pair 
of images were calculated by using the Willert and Gharib algorithm [16]. Here u and v 
represent the displacement vectors of the object or region of interest in the x and y directions, 
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respectively [17,18]. The position coordinates in each image are represented by x and y and 
subindex k indicates the corresponding object/region of interest, which is defined as an area 
of 64 × 64 pixels. Hence, a full image is divided in subimages (64 × 64 pixels) used to 
perform the DIC analysis yielding the DVF at throughout the full image for a given loading 
condition. The in-plane strains in the sample were evaluated by minimizing the errors of a six 
parameters linear model (typically used in linear elasticity theory) and previously used in 
other materials including bovine pericardium [17,18]. This minimization yields the values for 
the normal strain in the x and y directions (εx and εy), translation, shear strain (εxy), and in-
plane rotation within the analyzed region of the sample [18]. 

3. Results and discussion 

Macroscopically, BP can be seen as an ensemble of fibers that tend to align in the direction of 
the stress axis during the mechanical test [5]. Before rupture, the tissue exhibits three main 
regions in the stress-elongation ratio curve. In the first region, the elongation ratio increases 
with small changes in the applied stress as depicted in Fig. 2. After a certain value of the 
elongation ratio, some of the fibers start to align, and a highly nonlinear transition region 
appears. Finally, when most of the fibers are aligned, a third region showing a linear response 
to elongation can be identified. As shown in Fig. 2(b), these three regions were obtained in 
our experiments for elongation ratios of 0.0-0.15 (region I), 0.15-0.3 (region II) and 0.3-0.4 
(region III). Changes in the fiber alignment for different loading conditions are evident in the 
images shown in Fig. 2(a): as the load increases, the fibers tend to align along the direction of 
the force applied to the sample. 

Fiber alignment modifies the scattering conditions within the tissue thereby affecting the 
MFP. As shown in Fig. 2, the resulting MFP measured through EBS varies under different 
loading conditions. The preset values for the load on the sample were set to obtain data for 
EBS within the three regions of the stress-elongation curve. As seen in the figure, the MFP 
exhibits an inflexion point within region II, indicating a transition zone in which the collagen 
fibers of the tissue begin to align. These ordered-disordered transitions are characteristic for 
collagen fibers based tissue [19]. Within region III, both the stress and MFP show a similar 
behavior increasing with the elongation ratio. This can be related to an increase in scatterers 
per unit volume as the elongation ratio increases. Upon loading the BP sample, the tissue 
experiences a contraction along the transversal direction owing to the Poison ratio. This 
contraction leads to a rearrangement of the collagen fibers along the horizontal direction thus 
increasing the number of scatterers (fibers) per unit of volume. Hence, the scattering force 
within the sample increases along with the MFP [10]. This may be related to the intrafibrillar 
structure of collagen, and has been directly observed during mechanical tests by means of 
small-angle X-ray scattering (SAXs) measurements [20]. We therefore believe that EBS 
measurements provide an alternative means for evaluation of intrafibrillar modifications in 
densely packaged collagen tissue. 
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Fig. 2. Stress vs. elongation ratio curve of the BP tensile test (red points, left axis) and MFP as 
function of elongation ratio (blue points, right axis). The pictures show representative images 
for each region of the stress vs. elongation ratio curve. The arrow on the left side of the images 
indicates the direction of the load during the uniaxial tension test. 

While the mechanical data recorded during the tests are linked to the behavior of the 
fibers at a macroscopic scale, EBS measurements provide information related to fiber 
interaction within the illuminated portion of the sample. More localized information of the 
tissue is provided by DIC and MMI. These provide data at the micron scale within the probed 
area acquired by the imaging system. The left column of Fig. 3 shows the images obtained 
using white light illumination of the BP sample together with the corresponding DVFs 
(superimposed white lines with arrow heads). By means of DIC, the DVFs are obtained upon 
comparing subsequent images for different loading levels [5]. In this case, we present three 
sets of vectors, one for each of the regions shown in the stress-elongation curve (i.e., regions 
I, II and II). The DVFs for each region were obtained from image pairs acquired during the 
elongation test; the selected points of the curve for this calculations are shown in Fig. 2 and 
are labeled as a-a’ (region I), b-b’ (region II) and c-c’ (region III). For comparison, the 
corresponding images for the linear retardance (δ) in degrees, calculated through differential 
matrix decomposition, are shown in the right column of the same figure. The linear retardance 
for each pixel is represented in an arbitrary color scale and is shown together with the 
corresponding DVFs. 

The DVFs in Fig. 3(a) display a larger displacement component along the perpendicular 
axis to the applied load. Since Fig. 3(a) corresponds to elongation conditions of region I, in 
which the fibers are not aligned, some compression is to be expected owing to fiber 
displacement during the initial elongation. The retardance image for the initial conditions 
(right column of Fig. 3(a)) shows a relatively regular distribution of low retardance. This is a 
consequence of the highly isotropic orientation of the fibers for this loading condition, where 
alignment is not yet achieved. Notice also that the zones with highest retardance in Fig. 3(a) 
tend to match the elongation components of the DVFs, suggesting that the vectors are 
attracted to the zones with higher retardance. For elongation ratios beyond 0.2 (region II), the 
DVFs exhibit a clear change as the predominant component is aligned towards the loading 
axis, as seen in Fig. 3(b). This alignment is associated with the appearance of high retardance 
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zones increasing the contrast of the image. In general, the DVF in Fig. 3(b) tends to run from 
high retardance zones to lower retardance zones as in Fig. 3(a). Finally, the DVF of Fig. 3(c) 
shows the characteristic hyperbolic pattern of an aligned ensemble of fibers, as expected 
within the linear region of the tensile test [5]. In this case the retardance image displays a 
spread of higher retardance zones, owing to an increased interaction among the microfibers 
within the tissue [19]. In general, high retardance zones tend to spread as the elongation ratio 
increases. Notice however that for larger loading conditions, some of the zones with low 
retardance seem to attract the DVFs as it is shown at lower part of Fig. 3(c). This may be 
attributed to buckling in the central part of the image, which has been previously reported to 
appear in BP tissue samples under high stress conditions [5]. 

 

Fig. 3. Left column: white light images of the BP and their corresponding DVF. Right column: 
retardance images obtained from MMI analysis and their corresponding DVF. The scales for 
the retardance images are in degrees; each row is associated with different regions of the 
tensile test (see text). DVFs correlate well with retardance images obtained by means of MMI 
during the tensile test (Visualization 1). 

Another interesting feature of the retardance images is the localized points of high 
retardance. These localized points reach the maximum values of the color scale and become 
more evident as the load increases as it is illustrated in Fig. 3. An increase in collagen fiber 
interactions typically leads to the rupture of cross-links between adjacent fibers [19]. 
Mechanical testing of BP tissue has shown to generate cross-linking rupture creating localized 
zones of high shear stress [5]. This condition is achieved under the loading conditions shown 
in region III of Fig. 2 and leads to changes in birefringence that appear as localized zones 
with high retardance as shown in Fig. 3. Similar conditions have been observed when 
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studying collagen cross-linking effects in corneal tissue using polarization sensitive OCT 
[21]. 

4. Conclusions 

We have demonstrated that optical measurements, in particular DIC, MMI and EBS, can be 
incorporated into tensile tests of BP tissue. While DIC provides information related to the 
interaction between the tissue matrix and the collagen fibers, MMI accounts for interfibrillar 
changes in the tissue structure; EBS in turn shows intrafibrillar effects during the elongation 
test. The proposed arrangement is thus capable to provide information at different scales 
during a single mechanical test. It is clear from EBS measurements that the mean free path 
(MFP) within the tissue sample increases with elongation. Longer MFPs are associated to the 
linear region of the tensile test, where fibrils are in a more compact and aligned arrangement. 
The displacement vector fields (DVFs) obtained by DIC show a good correlation with the 
retardance images calculated by means of MMI. Our observations suggest that DVFs tend to 
run from low retardance zones to high retardance zones, where more fiber interaction is 
present. Similar trends in changes of tissue structure during mechanical tests have been 
reported using more elaborated techniques such as OCT and SAXs. We therefore believe that 
incorporation of these optical tools for tissue characterization represents a promising 
approach for elucidating mechanical properties of materials used for biological prosthetic 
devices. 
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